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Introduction

◮ For successful grasp planning, an accurate object

segmentation and pose estimation is necessary.

◮ Current perception methods for such tasks, however, have

different strengths and weaknesses, and are influenced by

occlusions in real-world applications.

◮ On the other hand, robots have the ability to move around to

acquire more information, and even to interact with the scene

in order to ease perceptual interpretation.

◮ Thus perception and action can mutually benefit from each

other, given the ability to reason about possible gains of

certain actions or perception methods.

◮ I will present past and ongoing efforts in these directions,

aimed to enable robots to interpret complex scenes.
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Unsupervised Part Learning

Table Chair Sideboard

[Mozos et al. RAM’11]

PCL-based implementation:

http://www.ros.org/wiki/

furniture_classification

[by Vlad Usenko]

◮ Identification of furniture

pieces for which similar CAD

models are available from

online stores.

◮ Common parts are grouped

into a codebook based on

simple statistics and they

cast votes for object

hypotheses

◮ Pose estimation by model

matching and geometric

verification.

◮ Can increase robustness by

using multiple

segmentations or views.
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Unsupervised Part Learning
Results for Office

◮ remaining false matches due to high occlusions
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Unsupervised Part Learning
Results for Seminar Room

◮ remaining false matches due to high occlusions



DLR RMC – Slide 9/28 ERF 2014, Rovereto, 13.03.2014 – Zoltan-Csaba Marton > Synergies of Planning and Perception by Reasoning Object Categorization in Clutter

Scene Subgraphs
Considering all possible part groupings

◮ Object categorization in

cluttered scenes where

accurate segmentation

can be difficult.

◮ Over-segmentation and

multiple hypotheses

better than relying on a

single, possibly bad

segmentation.

◮ Approach based on

scene- or part-graphs,

using additive RGBD

feature descriptors.

[Marton et al. SC’12, RSS-WS’13, extended version in JINT’14]
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Scene Subgraphs
Segmentation and classification on cluttered table scenes

Object parts are segmented and categorized as spherical, box, flat

and cylindrical (training and large-scale testing done using the

RGB-D Object Dataset [Lai et al. ICRA’11]). Geometric modeling

performed using the priors from the categorization.
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Exploiting Embodiment
Scenes From Multiple Views

◮ Decreasing occlusion, increasing number of parts

◮ The model fitting and verification steps also do not assume

one viewpoint or one segmentation per scan
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Exploiting Embodiment
Scenes From Multiple Views

220 240 260 280 300 320

40

50

60

70

80

90

[scan]

[%
]

average

merged

As the camera is moved (left), multiple frames can be captured

that cover different parts of the objects in the scene (right).
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Exploiting Embodiment
Door and Drawer Hypothesis Validation through Interaction
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Exploiting Embodiment

Detecting when and where to push and tracking 3D features in

order to segment objects (using openni_tracking from U-Tokyo):

http://www.ros.org/wiki/interactive_segmentation_textureless

[Bersch et al. RSS’12/WS, Hausmann et al. ICRA’13]
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Exploiting Embodiement
Robot Interacting with the Scenes
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Thanks to Karol Hausmann, Ferenc Balint-Benczedi, Dejan

Pangercic and Ryohei Ueda (Univ. Tokyo / Prof. Kei Okada)!
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Merging Pose Estimates
Example application scenario

Estimating the relative transformation between 3D model and the

robot (its sensor), based on 3D images. Different sensors, object

types, methods – develop a “high-level” solution.
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Merging Pose Estimates
Basic idea of multi-view recognition
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Pose Distances and Means
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Pose Distances and Clustering
Multi-view pose estimation of single objects
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[Work done together with Simon Kriegel and Manuel Brucker]
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Pose Distances and Clustering
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Discrete Bayes Filtering
Storing histograms

Representation for histogram filter:

◮ represent the space of rotation in a grid

◮ evenly divided the space of quaternions, and selected those

cells that contain unit quaternions

◮ not uniform sampling, but the area of SO(3) that falls into each

cell ca be estimated using random sampling

◮ 64x64x64x32 division of the 4D quaternions with dimensions

between -1 and 1 (w ≥ 0)

◮ accuracy in the range of 1-2 degrees, roughly 500,000 cells

covering SO(3)

◮ for initial tests half or quarter of this resolution used
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Discrete Bayes Filtering
Evaluation and comparison
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Histogram filter improves over the simple pose clustering. More

robust than particle filters (evaluated over 20 runs):
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Discrete Bayes Filtering
Error model evaluation

Using a low-resolution histogram, and a fast (but inaccurate) pose

estimation method (feature-RANSAC with few iterations, detections

shown right). Mistakes of up to 6 in 95% of the cases for the error

model’s histogram cells that were not hit during evaluation.
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Discrete Bayes Filtering
Error model based evaluation: step 1 (correct pose at 0)
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Discrete Bayes Filtering
Error model based evaluation: step 13 (correct pose at 0)
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Discrete Bayes Filtering
Error model based evaluation: step 24 (correct pose at 0)
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Summary

◮ Segmentation and pose estimation in real-world scenes is

challenging, but embodiment can help.

◮ Need a good way of reasoning about possible outcomes, and

checking the results of actions.

◮ A good modeling of expected results is difficult, and might not

be accurate enough.

◮ Preliminary results show the feasibility of such approaches

and their use for view and interaction planning.
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Questions?

Contact: zoltan.marton@dlr.de
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