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Semantic Perception for Seamless 
Integration of Technical Systems 

into Everyday Life 

Darius Burschka 
Machine Vision and Perception Group 

Department of Computer Science 

Technische Universität München 
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Where%do%we%need%percep,on?%

“known” clutter “unknown” clutter 
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Role of perception in an unknown 
environment 

labeling motion parameters 

•  Acquisition of the scene 
•  Clustering of raw 

sensor data 
•  Identification of 

independent motion 
components 

•  Estimation of action 
•  Understanding actions 
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What%is%in%the%scene?%%
(sensor%data%abstrac,on) 
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Feature Extraction 

• For all pairs of surflets at 
distance d insert the triple 
 
 
 
plus a pointer to its model in a 
hash-table. 

• Do this for all models using the 
same hash-table. 
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• For each model surflet pair 
in the hash-table cell: 
 
Compute the rigid 
transform T that 
best aligns 
 
 

Online Recognition Phase 

model hash-table 

IJRR 2012 Special Issue, Papazov et al. 
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IJRR 2012 Special Issue, Papazov et al. 
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What%happens%if%an%object%is%similar%to%
one%in%the%database?%

Indexing to the Atlas database needs 
to be extended to object classes 
   -> deformable shape registration 
needed 

Atlas information Observed object 
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Deformable Registration from  
generic models (special issue SGP'11 Papazov et al.) 

Matching of a detailed shape 
to  a primitive prior 

The manipulation “heat map” from 
the generic model gets propagated 
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Deformable%3D%Shape%Registra,on%%
based%on%Local%Similarity%Transforms%

M
V

P 
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What do we try to extract from the 
environment? 

labeling motion parameters 
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Hybrid Model of the Environment   
(JC Ramirez) 

Object
Container

3D 
reconstruction 

& 
plane 

detection

Blob 
Detection

FUSION

Object 
Layer

Geometric
Layer

Sensor

Blobs

3D Data

MAP

Objects 3D Structure

Geometric
Blobs

Map 
Update

System

Input Data Stream Output Data Stream
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World model saves additional info,  
like texture, motion, etc  

  

Dynamic 3D Mapping
Visual Estimation of Independent Motions for 3D Structures in Dynamic Environments

Juan Carlos Ramirez and Darius Burschka

Faculty for Informatics, Technische Universitaet Muenchen, Boltzmannstr. 3, Garching bei Muenchen, Germany

ramirezd@in.tum.de, burschka@cs.tum.edu

INTRODUCTION

Scene Tentative object candidates Encapsulated 3D blobs Motion estimation

An approach to consistently model and characterize potential object candidates presented in non-static scenes.

Three principal procedures support our method:

i)   the segmentation of the captured range images into 3D clusters or blobs, by which we obtain a first gross impression of

     the spatial structure of the scene,

ii)  the maintenance and reliability of the map, which are obtained through the fusion of the captured and mapped data to

     which we assign a degree of existence (confidence value),

iii) the visual motion estimation of potential object candidates, through the combination of the texture and 3D-spatial

     information, allows not only to update the state of the actors and perceive their changes in a scene, but also to maintain

     and refine their individual 3D structures over time.

3D-MAPPING FRAMEWORK

3D-Blob Detection [1]

After the supporting-plane detection, 

the rigid 3D registration is stored in an 

octree. In order to find the spatial 

relations among the 3D points a Depth-

First Search (DFS) is performed by 

traversing the leaves inside the octree 

and finally identifying and clustering 

the connected points.

Plane detection 

and octree

Map Maintenance [1]

This is done by validating or 

invalidating the existence of each 

mapped point. For this, a confidence 

value is assigned to each point during 

the blob fusion process. For a proper 

confidence-value assignment, visibility 

tests on each point are performed 

through a z-buffered reprojection 

method.

Clustering: Blob 

detection

VISUAL MOTION ESTIMATION

Cost function [2]:
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EXPERIMENTS AND RESULTS

REFERENCES
[1] Ramirez, J. and Burschka, D. (2011). Framework for consistent maintenance of geometric data and abstract task-

knowledge from range observations. In Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on.

[2] Arun, K. S., Huang, T. S., and Blostein, S. D. (1987). Least squares fitting of two 3-d point sets. IEEE Trans. Pattern Anal. 

Mach. Intell., 9(5):698–700.

3D textured image

Static registrations and

ego-motion estimation

Object motion detection

in the map

Scene

Object- and ego-

motiondetection

ICP fitting of confidence-value 

(red) points and object model

On a wheeled robot:

Our vision system is mounted 

on a wheeled robot that moves 

to fixed, known poses observing 

a dynamic scene. 

In a table scene:

Collating a sequence of range 

data of a non-simple geometric 

model.  

VISAPP 2013 Barcelona, Spain; 21 – 24 February 2013.

The scoring is based on the 

similarity of the matching points 

given by the observation residual:

and the Mahalanobis distance:

where

is the innovation covariance.

Object-motion estimations Results of ICP fitting

* confidence value

*
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Fusion%of%sensor%readings%
B%Construc,on%of%3D%models%
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Pose Estimation 

! Two motion prediction 
concepts 
•  2D feature propagation by 

motion derivatives 
•  IMU-based feature 

prediction 
! Combination of both:  
•  translation propagation by 

feature velocity (2D) 
•  rotation propagation by 

gyroscopes 

no feature propagation 

Strobl, Mair, Bodenmüller, Kielhofer, Sepp, Suppa, Burschka, Hirzinger 
IROS, IEEE/RSJ, 2009, Best Paper Finalist 

 

 
 

Mair, Strobl, Bodenmüller, Suppa, Burschka 
KI, Springer Journal, 2010 
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Strobl, Mair, Bodenmüller, Kielhofer, Sepp, Suppa, Burschka, Hirzinger 
IROS, IEEE/RSJ, 2009, Best Paper Finalist 

 

 
 

Mair, Strobl, Bodenmüller, Suppa, Burschka 
KI, Springer Journal, 2010 

Feature%Propaga,on%

! Two motion prediction 
concepts 
•  2D feature propagation by 

motion derivatives 
•  IMU-based feature 

prediction 
! Combination of both:  
•  translation propagation by 

feature velocity (2D) 
•  rotation propagation by 

gyroscopes 

linear feature propagation 
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Feature%Propaga,on%(Data%fusion)%

! Two motion prediction 
concepts 
•  2D feature propagation 

by motion derivatives 
•  IMU-based feature 

prediction 
! Combination of both:  
•  translation propagation 

by feature velocity (2D) 
•  rotation propagation by 

gyroscopes 

Strobl, Mair, Bodenmüller, Kielhofer, Sepp, Suppa, Burschka, Hirzinger 
IROS, IEEE/RSJ, 2009, Best Paper Finalist 

 

 
 

Mair, Strobl, Bodenmüller, Suppa, Burschka 
KI, Springer Journal, 2010 linear + gyros based 

prop. 
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Local&Feature&Tracking&Algorithms&

• Image-gradient based " Extended KLT (ExtKLT) 
•  patch-based implementation 
•  feature propagation 
•  corner-binding 
+  sub-pixel accuracy 
•  algorithm scales bad with number  

of features 
• Tracking-By-Matching " AGAST tracker 
•  AGAST corner detector 
•  efficient descriptor 
•  high frame-rates (hundrets of  

features in a few milliseconds) 
+  algorithm scales well with number 

of features  
•  pixel-accuracy 

8 
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Adaptive and Generic Accelerated  
Segment Test (AGAST) 

9 

Improvements compared to FAST: 
• full exploration of the configuration space by backward-induction (no 
learning) 

• binary decision tree (not ternary) 
• computation of the actual probability and processing costs  
(no greedy algorithm) 

• automatic scene adaption by tree switching (at no cost) 
• various corner pattern sizes (not just one) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       No drawbacks! 

 

Mair, Hager, Burschka, Suppa, Hirzinger 
ECCV, Springer, 2010 

E. Rosten 
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Real%Time%Pose%Tracking%
%
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Perception-based loop closure 

Obstacle avoidance 

Naviga,on%system%with%accuracy%
es,ma,on%
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Navigation example 

Estimation of 3 rotational 
angles 

Estimation of a translation 
vector 
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Es,ma,on%of%unobservable%proper,es%

Mapping of 
Knowledge 
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Physical%and%Geometric%Proper,es%%
of%an%Object%(ICRA%2012%Petsch%et%al.)%
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Func,onal%Proper,es%of%an%Object%%
stored%in%Func,onality%Map%
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Each tool used in the 
procedure has its own 
container describing its 
shape, handling properties 
etc. 

Knowledge%Representa,on%

Functionality map for a specific 
procedure describes the way 
how the tool was used during 
the procedure while moved 
between points in the world (Petsch/Burschka IROS2011) 
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Functionality Maps 
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Estimation of non-observable 
Scene properties (robot plays) 

•  Es,ma,on%of%the%Center%of%mass%
•  Es,ma,on%of%S,ffness%
•  Es,ma,on%of%Mass%and%Fric,on%Force%
•  Es,ma,on%of%Mass%Distribu,on%

simulator 

predict act perceive 
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Challenges%for%Percep,on%%

•  Perception is essential to interact with an unknown and changing 
environments 

•  Perception allows to compensate own uncertainties of the robot 
by providing robust reference to the environment 

•  Level of abstraction of the raw data reduces the amount of 
information needed to represent a scene at the cost of increased 
processing – an optimum for a given system needs to be found 

•  System needs to be able to cope not only with static scenes but 
also with dynamic changes (actions, failures) in the environment 

•  Observation of other agents (human other robots) can provide 
essential data to fill in the unobservable parameters of the scene 


